Resource-Constrained Multi-Agent Control Systems: Dynamic Event-triggering, Input Saturation, and Connectivity Preservation

نویسنده

  • XINLEI YI
چکیده

A multi-agent system consists of multiple agents cooperating to achieve a common objective through local interactions. An important problem is how to reduce the amount of information exchanged, since agents in practice only have limited energy and communication resources. In this thesis, we propose dynamic event-triggered control strategies to solve consensus and formation problems for multi-agent systems under such resource constraints. In the first part, we propose dynamic event-triggered control strategies to solve the average consensus problem for first-order continuous-time multi-agent systems. It is proven that the state of each agent converges exponentially to the average of all agents’ initial states under the proposed triggering laws if and only if the underlying undirected graph is connected. In the second part, we study the consensus problem with input saturation over directed graphs. It is shown that the underlying directed graph having a directed spanning tree is a necessary and sufficient condition for achieving consensus. Moreover, in order to reduce the overall need of communication and system updates, we propose an event-triggered control strategy to solve this problem. It is shown that consensus is achieved, again, if and only if the underlying directed graph has a directed spanning tree. In the third part, dynamic event-triggered formation control with connectivity preservation is investigated. Single and double integrator dynamics are considered. All agents are shown to converge to the formation exponentially with connectivity preservation. The effectiveness of the theoretical results in the thesis is verified by several numerical examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation Control for Multi-Agent Systems with Connectivity Preservation and Event-Triggered Controllers

In this paper, event-triggered controllers and corresponding algorithms are proposed to establish the formation with connectivity preservation for multi-agent systems. Each agent needs to update its control input and to broadcast this control input together with the relative state information to its neighbors at its own triggering times, and to receive information at its neighbors’ triggering t...

متن کامل

Finite-time Flocking of Multi-agent System with Input Saturation

In this paper a finite-time flocking of multi-agent system with input saturation is investigated. By introducing a new control protocol, it is show that speed and position of agents with double-integrator dynamics converge to the speed and position of leader in finite time. It is assumed that the graph between the agents is connected and that at least one agent is informed of the leader speed a...

متن کامل

Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays

As embedded microprocessors are applied widerly to multi-agent systems, control scheduling and time-delay problems arose in the case of limited energy and computational ability. It has been shown that the event-triggered actuation strategy is an effective methodology for designing distributed control of multi-agent systems with limited computational resources. In this paper, a tracking control ...

متن کامل

A multi-objective resource-constrained project scheduling problem with time lags and fuzzy activity durations

The resource-constrained project scheduling problem is to find a schedule that minimizes the project duration subject to precedence relations and resource constraints. To further account for economic aspects of the project, one may add an objective of cash nature to the problem. In addition, dynamic nature and variations in real world are known to introduce uncertainties into data. Therefore, t...

متن کامل

Analysis of Applying Event-triggered Strategy on the Model Predictive Control

In this paper, the event-triggered strategy in the case of finite-horizon model predictive control (MPC) is studied and its advantages over the input to state stability (ISS) Lyapunov based triggering rule is discussed. In the MPC triggering rule, all the state trajectories in the receding horizon are considered to obtain the triggering rule. Clearly, the finite horizon MPC is sub-optimal with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017